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I. INTRODUCTION 

In  the formulation of a molecular theory of solutions, there are two 
main problems to be considered. The first is the calculation of inter- 
molecular forces from a knowledge of molecular structure, and the second 
is the correlation of the macroscopic properties of a thermodynamic sys- 
tem with the behavior of a dynamical system, consisting of many mole- 
cules executing thermal motion under known intermolecular and external 
forces. In  the calculation of certain types of intermolecular force, for 
example, between ions and between molecules containing low-frequency 
electric multipole moments, simple electrostatics suffice. A more com- 
prehensive theory of intermolecular forces is furnished by quantum 
mechanics. The nature of van der Waals forces between non-polar 
molecules and of the repulsive forces, which determine molecular size, is 
now well understood. It is true that computational difficulties stand in 
the way of exact calculations for all but the simplest molecules. Never- 
theless, rather good approximations to  the potential of van der Waals 
force can be obtained in terms of a few simple molecular constants, such 
as polarizability and ionization potential. What is perhaps more impor- 
tant, the approximate form of the potential of intermolecular force as a 
function of the molecular coordinates is known. 

In  the present article, we shall be chiefly concerned with the second 
problem, which lies within the province of statistical mechanics. In  the 
study of liquids a t  ordinary temperatures it is usually sufficient to use 
classical statistical mechanics. This is permissible when the motion of 

1 Presented at the Ninety-second Meeting of the American Chemical Society in  
Pittsburgh, September, 1936, on the occasion of the presentation of the American 
Chemical Society Award in  Pure Chemistry for 1936. 
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the molecules involves only a high frequency and a low frequency type, in 
the sense of van Vleck’s definition. The high frequency type of motion is 
characterized by the fact that the interval between adjacent energy levels 
is large relative to kT, the product of Boltzmann’s constant and the 
absolute temperature. Under these circumstances there is no appreciable 
thermal excitation above the lowest energy state. The low frequency 
type of motion, on the other hand, is characterized by energy intervals 
very small relative to  k T .  The internal motion, electronic and vibra- 
tional, of most molecules is of the high frequency type at  ordinary tem- 
peratures, while the translational and rotational motion is of the low 
frequency type. 

In  an earlier article (1 1) a method for the statistical treatment of liquids 
was developed on the basis of the classical canonical ensemble. This 
method provides a suitable basis for the formulation of a general theory 
of solutions. In  addition to  yielding a number of new results, i t  embraces 
those of older special theories as parts of a unified whole. Both electro- 
lytes and non-electrolytes fit naturally into the scheme. We shall under- 
take the formulation of the theory as well as a discussion of some of its 
applications, particularly to electrolyte solutions. While there still 
remain a number of obstacles to be overcome, the theory is a t  present 
sufficiently well developed to yield some interesting results. 

11. GENERAL THEORY 

The Helmholtz free energy F N  of a liquid solution consisting of N mole- 
cules is related to the potential of intermolecular force, VN, by the method 
of the canonical ensemble, in the following manner 

ZN = $ * * * $ e-BvN dvl * * * dVN (1) 

where @ is equal to  l / k T ,  and N I ,  . . . N ,  are the numbers of moIecules of 
the several components of the solution. The function f , (T)  is a product 
of the internal partition function of a molecule of type s and the classical 
momentum phase integral associated with its low frequency translational 
and rotational degrees of freedom. The familiar phase integral ZN extends 
over the translational and rotational configuration space of each molecule, 
bounded by the volume v of the solution. We denote by dvi a differential 
element of this configuration space, divided by 47r for diatomic molecules 
and linear polyatomic molecules or by 8a2 for non-linear polyatomic 
molecules. 
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It has been previously shown (11) that the chemical potential of a 
component i of the solution may be expressed in the form 

where ZN-i  is the phase integral of the system with a single molecule of 
type i removed, the temperature, volume, and numbers of molecules of 
the remaining components being the same as in ZAv. We suppose that the 
potential of intermolecular force may be represented as the sum of terms 
Vdk, each depending upon the relative coordinates of a single molecular pair 

N 

-1 

This is no real restriction on the method, for it may be easily extended to 
include terms Vikl  depending upon the coordinates of three molecules, and 
so on. In  treating 
chemically saturated molecules, terms of the form V i k l  are probably needed 
only when it is desired to take account of the induced or optical polariza- 
tion of molecules in a system containing ions or dipoles. Such inter- 
actions are usually unimportant in comparison with other intermolecular 
forces. The form of equation 3 might be questioned for the repulsive 
forces, which operate a t  small intermolecular distances and determine 
molecular size. However, these repulsive forces generally act in such a 
manner as to  make the molecules behave as hard impenetrable objects. 
Thus their r81e consists in making e-BvN vanish whenever the relative 
coordinates of any molecular pair are within the region of repulsion. 
This may be accomplished with a potential of the form of equation 3, in 
which each Virc assumes a large value V E  whenever the relative coordinates 
of the pair are within the region of repulsion of volume Wsk.  Strictly 
speaking, V R  should be infinite, but for practical purposes i t  is only neces- 
sary to assume i t  very large relative to  kT, a procedure which avoids a 
certain amount of mathematical hedging. 

For simplicity, we shall not include such terms. 

It is convenient to  introduce a fictitious potential 

V N ( x i )  = V N - 1  + XiVi 

where Xi is an arbitrary parameter, and VN-l is the potential of inter- 
molecular force in a system containing one less molecule of type i than the 
original one. Corresponding to VN(Xi) we may construct a phase integral 
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ZN(XJ  which is equal to Z N  when X i  has the value unity and to ZN-i when 
X i  is aero. Following the methods of the earlier paper ( l l ) ,  we finally 
obtain for the chemical potential of the component i 

' N  
pi = kT log Ni/V + C $ ( J i k  + G i k )  + pi(T) 

k - 1  

V i k e - B d ( A i )  dvk dXi 

pi(T) = -kT logfi(T) 

where the integral J i b  extends only over the region of repulsion W i k ,  and 
G i k  extends over the rest of the volume of the solution. The function 
Wg (Xi) is the potential of average force between i and k, defined as follows 

where the integral in the numerator extends over all molecules except i 
and k, while that in the denominator extends over all molecules except i. 
In  the earlier article (11) it is shown that Wg(Xi) satisfies the following 
equation 

where w : k ( X i )  is the potential of average force acting on a molecule I in 
the neighborhood of the fixed pair i and k. It is defined by a relation 
similar to equation 5. A set of integral equations for the W$(Xi) of the 
several types of pairs in the solution may be obtained if w&) is approxi- 
mated by W:(Xi) + WL(1) : 

The nature of the superposition approximation, upon which this equation 
is based, has been discussed elsewhere (11). It may happen that outside 
the regions of repulsion, PW! and OWL are small enough to  permit expan- 
sion of the exponentials with the neglect of terms in the second and higher 
powers of p. When this is done a set of approximate linear integral 
equations is obtained, 
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1 in wil 

where w i t  and wLZ are the non-overlapping parts of the regions of repulsion 
for 1 around i and k,  and W i k l  is the overlapping part of these regions. 
Solution of these equations for several types of intermolecular forces has 
been undertaken. The case of electrolytes will be discussed in a later 
section of this article. Fortunately we do not need t'o know K i l  in this 
case. Solution has also been attempted for a system of spherical molecules 
with short-range attractive forces. In  this case K i l  must be known and 
has been estimated with some success for pure liquids. This work will be 
reported in a later art'icle. 

For the calculation of the integrals G i k  and J i k  appearing in equation 4, 
i t  is necessary to know the pot,ential W;(Xi) both inside and outside the 
sphere of exclusion w i k .  While considerable progress has been made in the 
calculation of the G i k ,  direct attempts to evaluate the J i k  have not yet been 
successful. Inside W i k ,  w:((xi) is of course positive and very large except 
when X i  is near zero, so that t'he integrand V i k e - B w i ( x i )  has a sharp peak 
near X i  = 0 and vanishes elsewhere. A crude approximation, not valid a t  
liquid densities, is obtained by setting W t  (Xi) equal to XiVik, yielding 
J i k  = I c T w i k .  Indirect methods of approach have yielded fair approxima- 
tions to J i k  in pure liquids, but in mixtures the problem has not been 
solved, except under certain arbitrary assumptions about the entropy of 
solvation. 

We return to equation 4 for the chemical potential, which we write in 
the following form 

k 

where 5 is the mean molal volume of the solution, and xl, . x2 are the 
mole fractions of the several components. Let us now suppose that our 
solution contains N :  molecules which are of the same shape and volume 
as molecules of type i but which exert no attractive forces on their neigh- 
bors. Although such molecules may have arbitrary shape, we shall find 



280 JOHN G .  KIRKWOOD 

it convenient to  refer to them as hard spheres. 
are zero. 
of a hard sphere 

For a hard sphere all G i k  

Referring again to equation 4, we find for the chemical potential 

where xit is the mole fraction of the hard spheres and fi‘ is the mean molal 
volume of the solution augmented by N :  hard spheres, the summation 
over all components of course including them. We now observe that the 
limit of 

pit - kT log 5,’ 

as xi -+ 0 is simply 11; of equation 9. Thus p: is the non-ideal part of the 
chemical potential of hard spheres of type i a t  infinite dilution in a solvent 
consisting of the solution under investigatior2 

For thermodynamic purposes, it is convenient to choose some reference 
value of the chemical potential, p ! ,  and to define an activity coefficient 
which measures the departure of pi - po from its ideal value kT log xi. 
When the mole fraction of the component is large, or when solutions are to 
be studied in which its mole fraction varies over a wide range, it is cus- 
tomary to choose p !  as the chemical potential of the pure liquid component 
a t  the same temperature and pressure as the solution, 

pi = kT log frxi + p:  (11) 
where the activity coefficient f i  approaches unity as the mole fraction xi 
tends to unity. On the other hand, if one component, the solvent, is 
present in large excess at all compositions of interest, it is convenient to  
choose the reference value, p ! ,  for a solute component as the limit of 
pi - kT log xi as the mole fraction of the solvent, xs, approaches unity. 

where yi is an activity coefficient which approaches unity as the solution 
becomes infinitely dilute with respect to all solute species. It is often con- 
venient to use the molarity or the concentration of species i in place of its 
mole fraction. In  dilute solution these variables are nearly proportional 

1 The formal and thermodynamic aspects of the separation of the chemical poten- 
tial into parts arising from different types of intermolecular force are discussed by 
Bell and Gatty (Phil. Mag. 19, 66 (1935)). Our hard sphere species corresponds to 
the solute with “limited interaction” of Bell and Gatty. 
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to one another and the corresponding activity coefficients are nearly equal. 
From equation 9, we obtain for the first choice of p ; ,  the chemical potential 
of pure liquid i, 

p: = NG:<& + p:o 
k 

where Gti is to be calculated with a distribution function e-flws(xt) appro- 
priate to the pure liquid component and p: is the non-ideal part of the 
chemical potential of a hard sphere of the same size as molecules of type i, 
at  infinite dilution in pure i. By subtraction and use of the relation 

I / E ,  = Ni/V + 2 Nkfik/V& 
k # i  
-1 

we obtain 

* *o LT log f :  = pi - pi 

If the pq is chosen at infinite dilution in a solvent s, we have 

p f  = NGfJ8: + p:") (14) 

where p*( ' )  is the chemical potential of a hard sphere of type i a t  infhite 
dilution in the pure solvent. We then obtain for the activity coefficient 
yi the following expression. 

* *(SI kT log 7: = p, - p i  

For exact calculations, we must be able to say something about the chemi- 
cal potential p: of the hard spheres. Since direct calculations of the J , k  

have not yet been successful, only provisional statements about p: may 
be made. At this point i t  is of interest to mention an empirical means of 
estimating p: - p ,  * ( a )  similar to a method due to Scatchard (18), who 
recognized the need for such a correction in the case of electrolytes. He  
proposed to use the solubilities of the noble gases for this purpose. The 
noble gases approximate hard spheres, a t  least in polar solvents, since their 
attractive forces are weak relative to those between polar molecules. In  
the present formulation 7: would be equal to  the limit of p * / p ;  as the 
pressure of the noble gas tends to zero, where p* and p z  are the gas 
fugacities in equilibrium with equal mole fractions of the dissolved gas in 
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the actual solution and in the pure solvent. This limit is equal to K/&, 
the ratio of the Henry’s law constants of the gas for the solution and for 
the pure solvent. By a process of size interpolation among the several 
noble gases, it should be possible to pick a value appropriate to the size of a 
given solute molecule. Given the data, this would a t  least provide a means 
of estimating errors introduced by the customary neglect of the term 
p: - p:(8) in theories of dilute  solution^.^ 

There is another method of estimating pi*,  based upon certain assump- 
tions about the entropy of solvation of a hard sphere. From thermo- 
dynamics we know that pi  is equal to  R; - TB, or to an adequate approxi- 
mation in condensed system, l?; - T&, where Ri, gi, and are the 
partial molal heat content, energy, and entropy of component i. Now the 
energy of a solution is easily calculated as 

-1 

B k z  = v k l  E ? - ’ ~ ‘ ( ~ )  dv1 

where E:(T)  is the sum of the internal energy and the average rotational 
and translational kinetic energy of a molecule of type IC, depending only on 
the temperature. The Ba are calculated with the distribution function 
W;(l), which always makes e-@Wi( l )  vanish in the region of repulsion 
u i k ,  so that no contribution to the integral arises from this region. The 
B ; k  all vanish for a hard sphere. If we imagine hard spheres of type i to be 
present, they can influence the energy of the solution only by their effect 
on the volume and on the relative distribution of the other molecules. 
Neglecting the latter effect, and calculating ET for a hard sphere of type i, 
we obtain 

k 

where, since 3; is to be taken a t  infinite dilution with respect to  the hard 
spheres, the B k t  and v are those of the actual solution. The partial molal 
volume 5; of the hard spheres is not necessarily equal to 5i, that of the 
actual species i, but in many cases the two will be very nearly equal. We 
now tentatively assume that 3: is the same for all solutions and pure 
liquids a t  the same temperature and pressure, remembering that 8; is the 

* A similar method was first proposed by Bjerrum and his coworkers (Trans. 
Faraday SOC. 23, 445 (1927); Z. physik. Chem. l27A, 358 (1927); 169, 194 (1932)). 
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non-ideal part of the partial molal entropy of the hard spheres a t  infinite 
dilution in the given solution. This assumption cannot as yet be justified 
by exact reasoning, and it probably is not valid or only approximately 
valid when one has to do with components of unequal molecular size. 
When applied to solutions whose components are identical in molecular 
size and shape, the assumption is entirely reasonable, for since the hard 
sphere exerts no attractive forces on the other molecules of the solution, its 
motion in the system is determined solely by the repulsive forces exerted on 
i t  by the other molecules, in other words by their size, shape, and packing. 
Under this assumption the chemical potential of a hard sphere depends 
upon the solution in which it is immersed only through E:.  This term 
arises from the pushing of the other molecules of the solution apart, an 
effect which may be likened to that of the introduction of a microscopic 
bubble into the solution. The corresponding values of j :  and 7; are 
the following 

where ij: is assumed to have the same value in the solution and in the 
reference liquid, in the first case pure liquid i, and in the second pure 
solvent. For future reference, we shall express kT log 7; in a form suit- 
able for dilute solutions in which only solute concentrations appear. 

where all molal volumes are assumed independent of composition. 
Scatchard (17) and Hildebrand and Wood (8,9) have proposed an equa- 

tion for non-electrolyte mixtures, based upon two primary assumptions : 
(a) the entropy of mixing is ideal; (b) the probability distribution is the 
same for all molecular pairs in the solution and is independent of compo- 
sition. In  our notation the Scatchard-Hildebrand equation may be 
written 
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where the partial molal volumes are assumed independent of composition 
and the BkOl are computed with a distribution function appropriate to any 
one of the pure liquid components. It is interesting to note the conditions 
under which our equations 13 and 18 reduce to the Scatchard-Hildebrand 
equation. This occurs when all W t  ( X i )  are independent not only of com- 
position, but also of Xi. When the W $  (Xi) are independent of composition 
the term 

GiJiij - G/giiio 

vanishes. When they are independent of Xi, the Gie reduce to the corre- 
sponding Bik. If, in addition, we suppose that the partial molal volume 
5: is equal to fii, and that all i ik are independent of composition, our equa- 
tions 9 and 18 reduce to  equation 20 after some algebraic transformations 
involving the relation 

An investigation of the W t  (A,) in liquids consisting of spherical molecules 
with short-range attractive forces, now in progress, has shown that when 
the attractive forces between different components do not differ greatly, 
the function This con- 
clusion is not especially remarkable, and has been reached by others on 
qualitative grounds. However, when this is true, we find that Wt(Xi) 
is practically independent of X, except when X i  is nearly zero, which re- 
quires the G,I, to reduce effectively to the Bik. When all components of the 
solution are of the same molecular size, W",X,) also becomes independent 
of composition, and the two major conditions for the validity of the 
Scatchard-Hildebrand equation are fulfilled. 

Guggenheim (6) has developed an interesting theory of solutions, which 
makes no attempt to go into the fine points of molecular distribution. 
His theory bears a marked resemblance to lattice theories of the solid 
state, as does a somewhat earlier theory of Heitler (7). Guggenheim con- 
firms the Scatchard-Hildebrand equation for equal molecular sizes and 
random distribution of pairs of the type previously discussed. He also 
proposes an approximate method for taking departures from random dis- 
tribution into account when the attractive forces between like and unlike 
pairs are considerably different, Guggenheim's approach is quite different 
from ours and in many ways simpler. However, while it is probably 
adequate to deal with problems concerning the energy of mixing and 
solution, it fails to take account of the non-ideal entropy of mixing in a 
formally satisfactory manner. We shall present briefly an extension of 

(A,) is determined primarily by molecular size. 
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the Guggenheim theory, which takes formal account of the entropy of 
mixing, a step which is necessary in estimating its possibilities. 

Guggenheim assumes that as in crystals V N ,  the potential of inter- 
molecular forces, has a number of sharp minima of equal depth in the 
configuration space of the system of N molecules. In  perfect crystals, 

there are just IT N , !  of these minima, one for each permutation of mole- 

cules of the same species, which just cancels out this factor in the denomi- 
nator of the right-hand side of equation 1. On the other hand, in some 
liquid mixtures, where attractive forces between like and unlike molecules 
are not very different from those between like molecules, the minima in 
V N  occur for permutations of unlike molecules as well so that they are 

Y 

s-1 

(k N , )  ! in number. The phase integral of equation 1 is then equal to 
s = l  

( 2 N.)!  I,v,  where I N  is the value of Z N  taken over the region in the neigh- 

borhood of one of the minima. From equation 1 we then obtain for the 
free energy of the solution 

S = l  

where factorials have been approximated by Sterling’s formula. Guggen- 
heim then approximates I N  by e-BBNuN where P N  is its value a t  the mini- 
mum (also the average potential energy in this theory), and u is a proper 
volume in which a molecule is free to  move. For the theory to be of value, 
the dependence of this quantity u on composition must be investigated. 
Guggenheim applies his theory only to cases in which it is reasonable to 
assume u independent of composition. However, it is possible to get a 
deeper insight into this question in the following manner. In  order to 
evaluate I ,  by peak integration, it is necessary to  expand V N  in a Taylor’s 
series in normal coordinates q1 . . q S N  specifying the displacement of the 
system of N molecules from the point in configuration space corresponding 
to the minimum value of V N  and the maximum of e - p v N ,  

where the linear terms in the q k  do not appear, since all first derivatives of 
V N  vanish at  the minimum, and, by the use of normal coordinates, all 
cross derivatives (a2VN/aq,aqk)o are made to vanish. The derivatives 
(a2VN/aq:)o are equal to 27r2Msv4, where M a  is a function of the masses of 
the N molecules, and the Y, is one of the normal frequencies, in terms of 
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which the vibration of the system around the position of minimum V N  
is described, in other words one of the Debye frequencies of the solution. 
In  the peak integration, the q8 are followed to range between - 00 and + 00 with the result 

Substitution of this expression into equation 21 gives 
V 3N V 

F N  = N k  kT log z k  + PN + kT log v s  + N M k ( T )  (24) 
k = l  s = l  k =  1 

where the factors ( l~T /2 i rM, )~ /~  are absorbed into the temperature functions 
( P k ( T ) .  Thus Guggenheim’s effective volume u is proportional to  the 
mean reciprocal of the Debye frequencies of the solution 

1 3 N  

N 8 = i  
log u = - c log v,’ 

except for an additive constant dependent only on the temperature. It is 
no easy task to determine the dependence of the mean Debye frequency on 
composition, and it should be pointed out that not only molecular size, 
but also the attractive forces must enter into such a calculation. How- 
ever, in a nearly ideal solution, where the assumption of approximately 
equal depths for all minima of Tr, is justified, it is reasonable to  suppose 
that u is rather insensitive to changes in composition of the solution. This 
is not necessarily true in Guggenheim’s extension of his theory to take into 
account the inequalities in the depths of the minima for unequal attractive 
forces. Moreover, in the latter case the Debye frequencies must be 
averaged, not only over all normal modes for a single permutation of the 
molecules, but also over all such permutations. It appears that an exact 
treatment of the entropy of mixing, into which the u must enter, is even 
more difficult by the Guggenheim method than by our own. 

III. THE R ~ L E  OF ELECTROSTATIC FORCES 

We shall for the present be concerned with moderately dilute solutions. 
It is also convenient to write equation 15 in a Let us denote -yi/rT by 7:. 

slightly different form. 

We shall not attempt to calculate the hard sphere contribution r:, but we 
should remember that to obtain the true activity coefficient 7: must be 
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multiplied by this quantity. An estimate of 7: in dilute solutions is 
given by equation 19. 

In  this section we shall be particularly interested in solutions containing 
ions and dipoles. While for non-polar solutions the difference between 
Gi, and Gf, may often be ignored, this is not true in solutions containing 
ions or dipole molecules, for the pair distribution functions W: (Xi) are no 
longer even approximately independent of composition. Let us consider a 
solution consisting of a mixed electrolyte furnishing v ionic species of 
charges e k  in a solvent consisting of dipole molecules. The potentials of 
intermolecular force for the different types of molecular pairs are the 
following, 

where T i k  is the distance between the ion pair i and k, and Tis is the distance 
between anion i and a solvent molecule of dipole moment y,. For 
N,Gi,/v, we have from equations 4 and 27 

where for clearness we indicate the orientation of a solvent molecule 
explicitly, do, being a normalized differential element of its orientation 
space, while dv, refers only to its translational configuration space. We 
remark that 

N -bw:(Xi) 
- 

V 

is the average density of solvent molecules having a specified orientation 
a t  a specified distance, ria, from ion i. Thus the integral 

is the average density of electric moment or local polarization (P of the 
solvent in the vicinity of ion i, charged to a fraction X i  of its full charge ei,  

and we may write 

NAs V = 1111 ei iP . V, (i) dv, dXi 
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If iD(r$ is the local dielectric displacement, we may define a local dielectric 
constant, by the relation 

1 % - 1 .  ip=- -  +D 4n ' E  

where the local dielectric constant, %, may of course differ from the macro- 
scopic dielectric constant, e, of the solution and may depend upon iD if 
there is electrical saturation. Except for possible terms of dipole sym- 
metry, the local dielectric displacement is equal to  the sum of --Xie~v8(l/~ia) 
and the mean values of - e k V s ( l / r k , ) ,  arising from the other ions k, aver- 
aged with i fixed 

Substitution of equations 30 and 31 in equation 29 yields 

We remark that if the regions of repulsion W i k  and wi6 are small spheres of 
arbitrary radius, it is easy to carry out the integration over s by means of 
Green's theorem, which transforms it to  a surface integral on the spheres, 
WiS. 

Using this relation, we may writ.e 
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where E is the macroscopic dielectric constant of the solution. If the devia- 
tion of the local dielectric constant % E  from E can be neglected, Via’ reduces 
simply to  e , e k / E r , k ,  the electrostatic energy of a pair of charges in a uniform 
dielectric continuum. As the distance rrk increases, % E  must approach E. 

Near ion i, it may be expected to deviate from E, owing to electrical satura- 
tion and to variations of the local density of the solvent from its average 
density. To investigate this effect from a molecular point of view, it is 
necessary to study the potential of average force and torque on a solvent 
dipole in the vicinity of an ion. Without detailed calculation, it is easy to 
see that the deviation of Vi;) from e,eL/Er,k  will have only the effect of impos- 
ing a short-range force upon the Coulomb force, for since E - ‘E 

approaches zero a t  large values of T r k ,  the integral certainly decreases 
more rapidly than 1/r,L. 

For an ionic constituent of an electrolyte solution in a polar solvent we 
may therefore write 

where is the local dielectric constant of the pure solvent near an ion i a t  
infinite dilution. We have assumed that the polarization of the solution 
was due entirely to the permanent dipole moments of the solvent molecules, 
and have ignored the small contribution due to induced polarization of the 
solvent and the solute. This may be taken into account by introducing 
terms of the form Viks into V N ,  where Viks is of the form a,VS(l /rr8)  .V,(l /rks),  
a, being the polarizability of a solvent molecule. By an analysis similar to 
the preceding one, equation 34 is again obtained, the local dielectric con- 
stant i~ including the effect of induced polarization. It should also be men- 
tioned that short-range van der Waals forces between the ions can be in- 
cluded by adding their potential to Vis,’. It is possible to take account of 
the influence of the solvent on the potential of average force W%(Xi), 
through the potential Vi;). We may write equation 6 for a pair of solute 
molecules in the following form. 
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The last integral 

is equal to N,Gi,/v and is given by equation 33. 
gral we proceed in a similar manner 

To obtain the first inte- 

where ikP is the average local polarization of the solvent near the fixed ion 
pair i and k. There will be a corresponding local dielectric constant +e, and 
the dielectric displacement is 

Substitution of [ ( i k e  - 1)/4.lrika]+D for ikP in equation 36 and integration 
over s leads to  an expression similar to  equation 33, with some additional 
terms. 

Wt(hi) = XiV(i8J(ike) + Aia(””e) - Aia(<€) 

Finally one obtains equation 35 in the following form 

where Vi;) and Ai,  are again given by equation 33, the notation V$)(ike) 
meaning that the local dielectric constant i k e  appears instead of {e. Finally, 
if the deviations of the local dielectric constants from the rnacroscopic 
dielectric constant can be neglected, the equation takes the form 

vi;) = Vik/€ 

the equation for the potential of average force between a pair of ions, in 
which the solvent plays the r61e of a dielectric continuum, the sole effect 
of which is to multiply the v i k  by a factor 1 / e .  We shall presently under- 
take the solution of equation 39 with certain approximations. 

Not only when the solute molecules are ions, but whenever the attrac- 
tive forces between them are principally electrostatic in nature, equations 
39 and 34 may be used for the calculation of the potential of average force 
and the activity coefficients, the Gti) being given by 

G\;) = 1’ i:, vi;) e + w : ( A i )  dvk dXi (40) 
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If the local dielectric constants are approximated by the macroscopic 
dielectric constant, Vi",' is reduced to V i k / e .  Electrostatic forces between 
solute molecules are generally of predominant importance only for electro- 
lytes and polar molecules. The three most important types of interaction 
are therefore those between two ions, between an ion and a dipole, and 
between dipoles. The other two 
bypes of forces have potential V $  of the form 

The first has already been considered. 

It should be remembered, however, that it is a much poorer approximation 
to neglect the deviation of the local dielectric constant from the macro- 
scopic one, in the case of ion-dipole and dipole-dipole interaction than in 
the case of ion-ion interaction, since the former are themselves short-range 
forces. Also, the effect of the discontinuity of the dielectric constant a t  
the surface of the dipole molecule has been neglected in the above expres- 
sions (41), the dipole having been supposed to  consist of a pair of charges 
encased in non-overlapping small spheres, since otherwise the dielectric 
displacement *D of equation 31 cannot be expressed simply as a sum of 
Coulomb terms arising from the individual charges of the molecules, but 
there will be contributions arising from the effect of the cavity made by 
the molecule in the statistical continuum of the solvent. The effect of the 
cavity can be calculated easily only if the local dielectric constant is 
assumed to be E ,  and the boundary conditions of electrostatics are applied 
a t  the surface of the molecule. (Continuity of the potential, the tan- 
gential component of the electric field, and the normal component of the 
dielectric displacement.) For dipole molecules of spherical shape, this 
leads to corrected expressions for Vi;). 

The method also leads to  an expression for the polarization energy of solvent 
by a dipole molecule. If the molecule is a sphere, we obtain 
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The potentials of ion-dipole and dipole-dipole interaction are those of 
short-range forces. For this reason Wt(X,) of equation 39 may be ap- 
proximated by X,V$) for an ion-dipole or a dipole-dipole pair. With 
this approximation, the integrals G$) take the form 

G!;’ = kT (1 - dvk (44) 
( 8 )  l Ik 

a form reminiscent of the second virial coefficient of gases. If the salting- 
out term A,, - A:8,  depending upon the influence of the solute on the 
dielectric constant of the solution is ignored, the following limiting law for 
the activity coefficient of a dipole molecule i in a dilute solution, is obtained 

where the sum extends over all solute components of the solution, which 
may include both ions and dipoles. It should be pointed out that this is 
not a true limiting law for the salting-out term Ai, - A:, and the hard 
sphere factor 7; (equation 19) both contain terms proportional to the 
solute concentrations Nk/v. Only when these additional terms are small, 
can equation 45 be a good approximation. This probably is only true for 
large dipoles such as zwitterions, the electric moments of which are very 
large in comparison with those of the solute molecules, or perhaps for 
smaller dipoles when the solvent is non-polar. Equation 45 was first pro- 
posed by Fuoss (4) for solutions containing only dipole solutes. His 
argument was based upon the van’t Hoff analogy between the osmotic pres- 
sure of a solution and the pressure which the solute would exert as a gas in 
the same volume. FUOSS’ calculation of the osmotic pressure therefore 
closely parallels the Keesom theory of the equation of state of dipole gases. 
Fuoss has given asymptotic expressions for the integral 

lIk (1 - e-dvih ) dvk 

for elongated elliptical molecules, and has tabulated it for spherical dipole 
molecules as a function of the parameter p2/ea3kT,  where 1.1 is the dipole 
moment and a is the molecular diameter. 

One of the most interesting applications of equation 45 is found in the 
study of the influence of electrolytes upon the activity coefficients of the 
aliphatic amino acids. It is well established that these acids exist in 
zwitterionic form in solvents of high dielectric constant. Zwitterions 
differ from true ions in that they possess no resultant charge, but they are 
characterized by dipole moments of great magnitude, of the order of 
15.0 X E.6.u. for a-amino acids. Calculation of log yi  for spherical 

( 8 )  
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zwitterions with the use of equations 42 and 45 leads to a limiting law in 
agreement with that obtained by the author (13) on the basis of the Debye- 
Hiickel theory. The calculations have been extended to non-spherical 
zwitterions, account being taken of the finite separation of the charged 
groups. The resulting formulas have been applied with success to experi- 
mental results of Cohn (2) and his coworkers on the influence of salts upon 
the solubilities of the amino acids and their peptides. This work will be 
reported in detail a t  a later time. 

It is of interest to remark that a better approximation to  the salting-out 
term Ai,  - A : 8 ,  which represents the difference between the energy of 
polarization in the given solution and in the pure solvent, can be obtained 
by incorporating a term to take care of it in Vi;). This may be done by 
taking the sizes of both molecules i and k into account in the calculation of 
their electrostatic energy Vi;) in a medium of dielectric constant E. If 
the molecules are spherical in shape and a,, and a k a  are the radii of the 
respective cavities which they form in the solvent, one obtains for ions the 
following expression for V$) , by applying the boundary conditions of 
electrostatics 

Similar, but more complicated, expressions may be obtained for ion-dipole 
and dipole-dipole pairs. If these Vi;) are used in equation 34, salting out 
is automatically taken care of and the term Ai,  - A : , ,  a cruder estimate 
of the effect, does not appear. 

IV. STRONG ELECTROLYTES 

The potential of mean force Wt(X,) between a pair of ions cannot be 
approximated by A,V$), because the long-range character of the interionic 
forces causes the 

to  diverge, We therefore turn to equation 39 for a better approximation. 
Equation 39 differs from equation 4 only by the substitution of Vi;) and 
Vi:) for V , k  and V,l. By the same set of approximations, 

Wfk(L) = W,”(L> + W:(l) 
and expansion of the exponentials, equation 39 may be transformed into a 
linear equation like equation 7. Introducing erel/ETI1 for the 71:;)) we 
obtain for ions of equal size 
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where the integrals over the regions of repulsion are omitted for brevity. 
For ions of equal size, they vanish because of electrical neutrality 

2 N1el = 0 
1-1 

when the solutions W:((xi) have the form 

where g(rik)  is the same function for all ionic species. A more general 
solution of equation 7 may be obtained by adding to equation 48 a term 
independent of the ionic charges, W;'((xi) satisfying the equation 

Thus W;'(Xi) is just the potential of average force between a pair of hard 
spheres. We shall be interested here only in the part of W t  (Xi) dependent 
upon the ionic charges. It is interesting to remark that a rather tedious 
analysis shows that the terms neglected in approximating Wflc by W f  + 
W: are of the same magnitude as the non-linear terms neglected in the 
expansion of exponentials to obtain equations 47 and 49, so that equations 
7,47,  and 49 are exact as linear approximations to equations 4 and 39. 

Since all 
ions are assumed identical as to  size and shape, ~ i k  and wi l  are independent 
of the ionic species I, as are the integrals 

We now introduce the form of equation 48 into equation 47. 

so that equation 47 becomes 

where R, r13, and r23 have been introduced for r i k ,  T k l ,  and r i2 .  We remark 
that K is identical with the corresponding function in the Debye-Huckel 
theory. We now assume that the ions are spherical in shape so that W13 

and W23 are spherical regions of equal radius a, separated by a distance R, 
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which are to be excluded from the region of integration in equation 50. 
Introducing r13 and T23 as variables of integration, we have 

dv3 = (2a/R)rm3drdr23 

By integration over n3, with proper regard to  the influence of W23 upon the 
limits of integration, we obtain the following integral equation. For 
simplicity we designate the single remaining variable of integration, 
~ 1 3 ,  by r. 

g(R) = &)/R 

v(R)  = 1 - nljd-K(R, r)&) dr 

where the kernel K(R,  r )  has the form 

a 5 R < 2a: K(R,  r )  = ( r  + R - a ) / 2  a 5 r < R + a 
= R  R + a l r < . o  

= ( r +  R - a ) / 2  R - a l r  < R f u  
= R  R + a < r < m  

2a 5 R < m :  K(R, r )  = r a i r < R - a  (52) 

If we had neglected the size of one of the ions and extended the integration 
over W23, the kernel K(R,  r )  would have the simpler form 

a < R < o o  
K(R , r )  = r ; a  5 T < R 

= R ; R < r < m  
(53) 

With the approximate kernel (53), equation 51 is equivalent to the linear 
Poisson-Boltzmann equation with boundary conditions, of the Debye- 
Hiickel theory. The unique solution is 

a result which may be verified by direct substitution. 
value of W:(X;, R )  is 

The corresponding 

X i  e, ek e-K(f+a) 
BR 1 + ua 

W:(Xi, R )  = - (55) 

With the omission of the salting-out term and the hard sphere term, the 
activity coefficient of a spherical ion of type i may be obtained from equa- 
tions 40, 33, and 34, 
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Ka 0.10 

ala 0.10 
h a  0 .oo 
a2a 9.88 
h a  0.00 
ala 11.11 
Psa lt14.42 

JOHN G. KIRKWOOD 

1.00 1 1.03 

1.62 2.07 
0.00 0 .oo 
2.56 2.07 
0.00 0 .oo 
6.26 

h14 .90  

where, because of electrical neutrality of the solution, the vanishing term 

(4neile) 2 (Nkek)/v 1' 1- RdRdXi has been subtracted from the left-hand 

side of equation 56. If W;(Xi, 8) has the form 48, and non-linear terms 
in the expansion of the exponential can be neglected, we have 

k = 1  

where ~ ( € 2 )  satisfies the integral equation 51. With the solution 54 corre- 
sponding to the approximate kernel 53, in which the size of one of the ions 
is neglected, we obtain the Debye-Huckel (3) result 

e:  K k T l o g r i  = -- - 
2E 1 + Ka 

The mean activity coefficient of any electrolyte which may be formed from 
the ions in the solution may be calculated from the individual ion activity 
coefficients in the usual way. 

The solution of equation 51 with the kernel 52, which takes the sizes of 
both ions of the pair into account, is considerably more difficult. It is 
found that the solution may be expressed in the form 

m 

q(R) = Ane-2nR 
n-1 

(59) 

where the sum extends over all roots zn,  with positive real parts, of the 
transcendental equation 

z2 - K~ coshza = 0 (60) 

It is convenient to order the roots according to the magnitudes of their real 
parts. Several of the denumerably infinite set of roots are tabulated 
below: 

z n  = an + i P n  

2.00 

1.06 
f 2 . 0 8  
1.06 

4.84 
lt15.07 

-2.08 
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When K a  is less than 1.03, there are two real roots, one of which remains very 
nearly equal to K a  in dilute solutions. At Ka equal to 1.03, the real roots 
merge into a repeated root, while for greater values of Ka, all roots are com- 
plex. For small values of Ka, all roots except z1 have very large real parts, 
so that their contributions to cp(R), equal to e-@, will decay rapidly as R 
increases, and so can be important only for small values of R. In  more 
concentrated solutions, Ka > 1.03, all roots are complex, imparting to 
p(R) an oscillatory form, characteristic of radial distribution functions in 
liquids. 

By substitution of the form 59 in the integral equation 51 with the kernel 
52 for R > 2a, it is found that only one condition is imposed upon the 
coefficient An. 

However, in order that 59 be a solution in the interval a 5 R < 2a, an 
infinite set of conditions is imposed upon the A , .  Since the e--lnR doubtless 
form a complete set of functions, they could be orthogonalized by linear 
combination in the interval a 5 R < 2a, and the properties of orthogonal 
sets could be used in conjunction with the integral equation for the deter- 
mination of the A n .  However, this process is rather laborious and cum- 
bersome. A better method, suggested to the writer by Dr. Warschawski 

of Cornel1 University, is to  calculate the Laplace transform cp(R)e-YRdR, 

which is then inverted by means of the Fourier integral theorem. This 
procedure transforms the integral equation 51 entirely onto the interval 
a 5 R < 2a. Although the resulting integral equation cannot be solred 
in finite terms, it leads immediately to the desired set of linear relations 
between the A , ,  for a solution of the form 59. 

We shall be content here with the construction of an approximate solu- 
tion, involving only the first two terms of the series 59. Using the two 
roots Z, with smallest real parts, we can make the solution 

La 

cp(R) = Ale-ZI(R-5) + Aze-ZZ(R-a) (62) 

fit a t  the two ends of the interval, R = a and E = 2a, and everywhere 
outside, R > 2a. By substitution in equation 51 with the kernel appro- 
priate to a 5 R < 2a, the condition that equation 62 be a solution at  
R = a imposes one linear relation upon the coefficients. A second rela- 
tion is furnished by equation 61, and we remember that any linear combina- 
tion of the form 59 is a solution of R = 2a and for all greater values of R. 
After making some transformations with the aid of equation 60, we have 
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with solutions 

22 a) z :  - e-(zl+z!)a( l  + 

21 a) 

A1 = - 
K~ (1 + zl~)e-~1" - (1+ z2u)e-2g 

K~ (1 + ~ ~ a ) e - ~ z ~ ( l  + z1u)e-+ia 

(64) 
2 - e-(2~+z~)a(1 + A - '2 

2 - -  

when KU < 1.03, z1 and 22 are real, equal to a1 and a 2 .  W:(Xi, R )  and log 
7: may be computed by substitution of equations 62 and 64 into 48 and 
57. 

For the activity coefficient, we obtain 

In dilute solutions, reference to the table of roots shows that (a2a - ala) 
is very large, amounting to about 9.0. Under these circumstances all 
terms involving e-"*" are completely negligible and we have 

a result which differs from the Debye-Huckel expression only by the ap- 
pearance of cy1 instead of K .  But in dilute solutions a1 differs inappre- 
ciably from K so that the Debye-Huckel result is obtained. When KU is 
equal to 1.03, the roots z1 and 22 merge into a repeated root, and equations 
63 have no solutions. However, the expressions 65 and 66 for Wk(Xi, R)  
and the activity coefficient both converge for KU = 1.03, although A1 and 
A2 individually diverge. Beyond KU = 1.03, the roots z1 and 22 become 
complex conjugates, a: zk ip and equations 63 again have solutions. Then 
W t  (Xi, R )  takes the form 

ER w;cxi, R) = xi e i e k  - e-a(R-o) [A1 cos B(R - a) + A2 sin p(R - a)] 

1 (a2 - /?)[sin pa - pae-aa] - 2ap[cos pa - (1 + ( ~ a ) e - ~ " ]  
K2 

1 (a2 - 82)[cos @a - (1 + aa)e-a~] + %$[sin pa - pae-aa] 
K2 

(68) A1 = - 
(1  + aa) sin pa - @a cos pa 

(1 + aa) sin pa - pa cos Bn 
Az = - 
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For the activity coefficient’, we obtain the expression 

e: a sin pa -  cos pa - e--aa) 

2e (1 + au) sin pa - pa cos pa k T l o g r i  = -- 

In  figure 1, equations 66 and 69 are compared with the Debye-Huckel 
formula (58 ) .  In  dilute and moderately dilute solutions, KU < 0.5, log 
7: does not differ much from the Debye-Huckel value. However, a t  
higher concentrations, KU > 1.03, the deviation becomes appreciable, and 
log 7; fails to approach the Debye-Huckel asymptotic value -e;/cukT. 

The periodic factor in Wyk(Xi, R ) ,  for KU > 1.03, is particularly interest- 
ing. As KU increases, the real part, a, of z1 and zz diminishes, and the 

FIQ, 1 
- - - - - -  Debye-Hiickel equation 58 

Equations 66 and 69. 

exponential decay becomes less rapid. In other words the ionic atmos- 
phere expands. At the same time the period of oscillation 27r/p, a t  first 
very long, tends to a distance slightly exceeding the ionic diameter, a. 
When KU becomes equal to 2.79, CY vanishes and equation 68 is no longer a 
solution of 51. At higher concentrations, a liquid type of distribution 
function, if one exists a t  all, must be constructed from the higher roots of 
equation 60. For values of KU just less than 2.79, the exponential factor is 
effectively unity over many molecular diameters, and the corresponding 
distribution is suggestive of a microcrystalline distribution, with LLlocal’l 
long-range order extending over many molecular diameters. This brings 
up the intriguing question: Do very concentrated electrolyte solutions 
(KU > 2.79) possess long-range crystalline order in the distribution of the 
ions, which they contain? A loosely bound statistical lattice might still 
leave the solution with the elastic properties of a viscous fluid, manifesting 
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itself chiefly in the optical properties. The answer to this question is 
probably in the negative, for the solution 68, in which only the first two 
roots of equation 60 are employed, very likely has only qualitative sig- 
nificance at  very high concentrations. The value, KU = 2.79, predicted by 
equation 68 as the limiting concentration for a liquid type of distribution 
seems altogether too lorn. Thus in a uni-univalent electrolyte solution 
with e; /EakT equal to unity, this value of KU corresponds to a volume 
about 2.3 times greater than the ions would occupy if packed in a face- 
centered cubic lattice, with an interionic distance equal to the diameter a. 

Better approximations to the solution of equation 51, may be obtained 
by including terms e-znR involving the higher roots of equation 60. The 
best way to do this is to employ a general method based upon the Laplace 
transformation. However, the method employed here could be extended 
by including the terms e--rnR involving the first m roots (ordered according 
to the magnitude of their real parts) and determining the coefficients A ,  by 

making the sum x A n e - a n ( R - - a )  a solution of equation 51 at  m points on the 

interval a 5 R < 2a. However, even an exact solution of equation 51, 
although a step in the right direction, could be applied only with caution to 
very concentrated electrolyte solutions. There is always the question of 
the error arising from approximating the local dielectric constant by the 
macroscopic one. This error is doubtless serious when the mole fraction 
of the electrolyte becomes comparable with that of the solvent. More- 
over, even if the macroscopic dielectric constant can be used, it may be- 
come so small in very concentrated solutions that it is not permissible 
to  approximate the exponentials in equation 39 by the first two terms of 
their series expansions. Under these circumstances equation 51 no longer 
furnishes an adequate approximation to W t  (Xi). Another point should 
be borne in mind. The 7; of equation 57 is not the actual activity coeffi- 
cient, but must be corrected for salting out and multiplied by the hard 
sphere factor r:, before comparison with experiment can be made. These 
latter influences are not negligible in comparison with the pure electro- 
static effect, a t  very high concentrations. 

In  spite of the fact that equation 51 can be attributed only to qualitative 
significance in extremely concentrated solutions, it seems reasonable to  
suppose that it can be used quantitatively in moderately dilute solutions, 
let us say up to concentrations of 1 mole per liter, as long as e,ek/eakT is 
small relative to unity for all ion pairs. When this condition is not fulfilled, 
either equation 39 must be solved without expansion of the exponentials, 
or a method of the Bjerrum (1) type must be used. Since the error in- 
volved in approximating W:, by W t  + W: is of the same order of magni- 
tude as the non-linear terms in the expansion of the exponentials of equa- 

m 

n= 1 

, 
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tion 39, the former method is almost hopelessly complicated. The 
Bjerrum method seems therefore to be the most promising. 

V. STATISTICAL MASS ACTION AND THE BJERRUM THEORY O F  

ION ASSOCIATION 

If the potential V,k has a minimum of depth large relative to kT for 
certain values of the relative coordinates of the molecular pair i and k ,  
and if for this configuration, they exert together only a small attractive 
force upon neighboring molecules, W t  may be approximated by an expres- 
sion which leads to simple mass action. It is a matter of considerable 
interest to investigate the nature of this approximation. 
Reference to equation 18 of “Statistical Mechanics of Fluid Mixtures” (11) 

allows us to write the chemical potential of a component i in the form 

pi = kT logfi(l)C, + cp,(T) 

where C, is the concentration of component i, in any units, conversion 
factors being absorbed into cp,(T), and fz(x) is the activity coefficient of a 
partially coupled molecule i. Let us now consider a potential of average 
force Wt(X,, A,), defined for a potential of intermolecular force VN(X,, Xk) 

(equation 7, “Statistical Mechanics of Fluid Mixtures”), in which only the 
coupling parameters X, and x k  for a single pair of molecules differ from 
unity. 

N N 

v :  = vi1 v;  = c v,, 
1 = 1  z = 1  
# k  # i  

Equations similar to equation 29 (“Statistical Mechanics of Fluid Mix- 
tures”) may be obtained by partial differentiation of equation 71 

It is unnecessary to indicate the dependence of Vl(Xi, A,) on Xk since, 
except for a term of zero order, it will be independent of the coupling with 
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any single molecule of type k. On the other hand ikV:(Xi, Xk), an average 
with i and k held fixed, will depend on both X i  and XI, when the two mole- 
cules are in each other's neighborhood. In  order to calculate W:(X, l ) ,  
we remember that w:(Xi, Xk) must vanish when either X i  or X k  is zero. 
We choose a path of integration in the (Xi, A,) plane consisting of the 
straight h e  X i  = A t ;  hk = t extending from the origin to the point (A, 1).  
Using this path and the partial derivatives of equation 72, we obtain 

W:(A, 1) = XVik + 1 ik- dk- 
[A V:(At, t )  + VL(At, t ) ]  dt 

(73) 
lo' 

- v:(t>dt - l1 v:(t> dt 

We note that XV: + V:  is the mutual potential energy of the molecular 
pair i and k with all the other molecules of the solution. Let us write 

1 ik- ik- 
kT logfik(Xi li q i k )  = [A V:(At, t) + V:(At, t ) ]  dt (74) 

By reference to equation 70, we see thatfik(A, 1, qik) could be interpreted as 
an activity coefficient of the compound molecule (ik), in which the relative 
coordinates q i k  of the pair have some fixed value. This interpretation, 
while correct is, however, unessential. Referring again to equation 70 and 
remembering that v:<t> and can be identified with V;(t) and Vk(t) 
(since in an average in which no molecules are held fixed, any single term 
v i k  is of negligible order), we may write equation 73 in the form 

- 
- 

The usefulness of this expression is apparent, for if Vik has a deep mini- 
mum for some particular configuration q i k ,  and a t  the same time f i k  is 
practically unity, W!((x, 1) can be approximated by XVik - kT logfi(X)fk(l). 
As will presently be shown, it is this approximation which leads to simple 
mass action. 

From now on, we shall limit our attention to a system of only two com- 
ponents. Using equations 70 and 74, and separating the region of integra- 
tion for unlike pairs into a region vo for small values of their relative 
coordinates and v - vo for large values, we may write 
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where C1 and C2 are the bulk concentrations of the two components in 
molecules per cubic centimeter. The expression 74 has been introduced 
only for W :  in the region vo.  It could have been used for all W t ,  but this 
would not be a very useful procedure. A similar equation may be con- 
structed for f2(X). Integration of equation 75 and the similar one for 
f2(X) with regard for the fact that fl(0) and f2(0) have the value unity, 
leads to the result 

Klfi c-2 1 1  x - z =  

K 2  = -& /oi 1" V12g21(t, l)-1e-8'vu dv dt 

where all activity coefficients refer to X = 1, since it is these that we finally 
desire. The functions KI  and KZ depend in general upon the composition 
of the solution. It seems probable 
that this could be proved generally true, and i t  is certainly true when 
e--BtV1* has a strong peak a t  t = 1, the most important case. We now define 
quantities C12 and .f12 by the relations 

We shall assume them to be equal. 

where K is an arbitrarily chosen equilibrium constant. Equations 77 
over-define C12, but substitution in equations 76 shows that both relations 
are satisfied. The substitution leads to the following equation for C12 

which is the generalized mass action equation, Cl2 having a phenomenolog- 
ical interpretation as the concentration of compound pairs defined with 
reference to the equilibrium constant K .  Up to this point we have made 
use of purely formal operations, and, except for the assumption of equality 
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of K1 and K2, the results are rigorously true within the frame of classical 
statistical mechanics. While equation 78 could of course be written down 
at  once, on formal thermodynamic grounds, our rather tedious analysis is 
necessary for the correlation of the activity coefficients f1, $2, and flZ with 
intermolecular forces. 

A suitable choice of the equilibrium constant K is evidently the following 

With this equilibrium constant, we obtain simple mass action if fl, f2, and 
$ l z ( t ,  1) do not deviate appreciably from unity. Again, if Vlz has a sharp 
minimum of depth large relative to kT,  inside vo> e-fltvlx will have a sharp 
peak for this configuration as well as a t  t = 1 in the interval 0 5 t 5 1, 
and we have 

$12 = flZ(1, 1, d2) (80) 
where ql"z specifies the relative coordinates of the pair a t  which Vlz has its 
minimum. It may happen that f12, f1, f2  do not deviate much from unity, 
or much less from unity than fl or f ~ ,  so that simple mass action will 
furnish a good first approximation in the calculation of fl andf2. This will 
be true for an ion pair when -e ,ek/eakT is large relative to unity, since f12 

is then the activity coefficient of a dipole under the influence of ions. 
Again in the case of a pair of dipole molecules, for which V12 has a sharp 
minimum in the antiparallel orientation, f12 will be the activity coefficient 
of a quadrupole in the presence of dipoles. The choice of vo is arbitrary. 
Any change in f 1 ~  caused by a change in vo will be compensated by changes 
in $1 and $2. However, the method is likely to prove useful only when V12 

has such a deep maximum that K and $12 are very insensitive to the choice 
of VO. For short-range forces, vo may conveniently be expanded to include 
the entire volume v of the solution, provided f12 does not differ sensibly 
from unity for any configuration in which VI2 differs effectively from zero. 
This is not true of interionic forces. 

We shall now discuss the application of the theory just outlined to 
electrolyte solutions. When certain conditions are fulfilled it leads to  the 
theory of ionic association first proposed by Bjerrum ( l ) ,  and so success- 
fully extended and applied by Kraus and Fuoss (14). Although we have 
considered a system of only two components, an argument similar to that 
used in section I1 allows us to apply the theory to two solute components in 
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the presence of an excess of solvent, Vi:) replacing the Vik,  and j$(Z', p ) ,  the 
non-ideal part of the chemical potential a t  infinite dilution, replacing 
cpi(T) as the reference value of the chemical potential. For brevity we 
shall omit the superscript s on the Vik in what follows. We shall consider 
a uni-univalent electrolyte a t  a molecular concentration C in a solvent of 
dielectric constant E .  The bulk concentrations of both positive and 
negative ions are then both equal to C .  Under these circumstances, we 
obtain from equations 77 and 78 for the activity coefficient of either ionic 
species, also jk, the mean activity coefficient, 

fl = (1 - 471 

c: /erkT - 1) r2 dr 

where vo is taken as a sphere of radius ro, and CY is equal to c12/c. For the 
present we suppose merely that r0 is chosen so that W : / k T  is small relative 
to unity for all greater values of the interionic distance, so that the ex- 
ponentials in equation 75 defining f1 may be expanded with retention of 
only the first two terms. For ions of the same valence type, we may sup- 
pose that for distances less than ro, W : / k T  is large and positive relative to 
unity so that is effectively zero, while outside ro the exponential may 
be expanded. Taking account of electrical neutrality, we then have 

7cT log71 = - K~ i'i, [W:(t, 1) - W",(t, l)] r dr dt (82) 

where K is the Debye kappa for a uni-univalent electrolyte. It would be 
necessary to have recourse to equation 39 for a satisfactory investigation 
of W :  and W :  when r > To. Since this involves difficulties which have not 
yet been overcome, we shall limit ourselves to some semi-quantitative 
remarks. By analogy with the simple Debye formula, equation 58, 
Bjerrum assumed 

K' (1 - (Y)1'2 K 

where K' is an effective kappa, computed with the concentration of "free" 
ions, c - c 1 ~ .  This result follows from equation 82 if the potentials of 
average force have the form 
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- 
It may be verified without difficulty that W :  = el= and W !  = -el+(R) 
where +(R) is the mean electrostatic potential in the neighborhood of a 
sphere of radius ro containing a total charge tel(l - a); when the Poisson- 
Boltzmann equation holds for r > ro and the boundary conditions of 
electrostatics are satisfied at  r = To. This is a reasonable approximation, 
for f e l ( l  - a) is indeed the average charge carried by the sphere ro around 
any ion, a being the probability that an ion is “associated,” that is, that 
another ion of opposite charge lies within the sphere, ro. Further, the 
appearance of the effective kappa, K ’ ,  means that the other ions in the solu- 
tion screen with this same average charge, f e l ( l  - a). With the Bjerrum 
result, equation 83, we obtain 

- 

where CY is to be calculated by equation 81. In the original Bjerrum theory 
f12 was assumed to be unity. FUOSS, however, has made estimates of f1z by 
considering the interaction of an ion pair in contact with remaining “free” 
ions in the solution. It is difficult to judge the adequacy of Bjerrum’s 
approximation to fl. It is probably adequate in dilute solutions, when a 
is small relative to unity, but should be used with caution for values of a 
intermediate between zero and unity. When Q is nearly unity, it is again 
adequate, for then it is sufficient to know that fl is virtually unity and its 
form as a function of concentration is unimportant. 

We have remarked that ro must be sufficiently large to permit the expan- 
sion of e-flw: and e-flw: for greater interionic distances. This condition is 
satisfied by Bjerrum’s value 

rg = e : / 2 ~ k T  

Otherwise the choice of ro is arbitrary, any change being absorbed in 
f12, fl, and f2. However, it should be remembered that an unfortunate 
choice of ro, for example too large a value, can make it impossible to 
approximateflz by unity or by the activity coefficient of a dipole consisting 
of an ion pair in contact. The simple Bjerrum theory will be useful only 
when this can be done. If e-flyls has a strong peak when the ions are in 
contact, both K and f12 are very insensitive to the choice of ro, provided it 
remains a length of molecular order of magnitude, and under these cir- 
cumstances the theory leads to unambiguous results. An illuminating 
discussion of this point has been made by Fuoss ( 5 ) ,  with the aid of a dis- 
tribution function, specifying the probability that an ion pair be sepa- 
rated by a distance R, while no other ions be within the sphere of radius R. 



LIQUID SOLUTIONS 307 

REFERENCES 

(1) BJERREM, N. : Kgl. Danske Videnskab. Selskab. 7 , 9  (1926). 
(2) COHN, E. J.: Annual Review of Biochemistry, Vol. IV, p. 93 (1935). 
(3) DEBYE, P., AND H ~ C K E L ,  E. : Physik. Z. 24,185,305 (1923). 
(4) FUOSS, R.: J. Am. Chem. Soe. 66,1027 (1934); 68,982 (1936). 
(5) FEOSS, R.: Trans. Faraday SOC. 30, 967 (1934). 
(6) GUGGENHEIM, E. A.: Proc. Roy. SOC. London 148A, (304) (1935). 
(7) HEITLER, W.: Ann. Physik [4] 80, 630 (1928). 
(8) HILDEBRAND, J. H., AND WOOD, S. E. : J. Chem. Physics 1,817 (1933). 
(9) HILDEBRbND, J. H. : Chem. Rev. 18,315 (1936). 

(10) KEESOM, W. H. :  Physik. Z. 22,129,643 (1921). 
(11) KIRKWOOD, J. G.: J. Chem. Physics 3, 300 (1935). 
(12) KIRKWOOD, J. G.: J. Chem. Physics 2,767 (1934). 
(13) KIRKWOOD, J. G. : J. Chem. Physics 2,351 (1934). 
(14) KRACS, C., AKD FUOSS, R.: J. Am. Chem. SOC. 66,476, 1019,2837,3614 (1933). 
(15) LEVINE, S. : Proc. Roy. Soc. London 162A, 529 (1935). 
(16) ONSAGER, L. : Chem. Rev. 13,73 (1933). 
(17) SCATCHARD, G.: Chem. Rev. 8,321 (1931). 
(18) SCATCHARD, G.: Physik. Z. 33,22 (1932). 


